1,212 research outputs found

    Regular and Anomalous Quantum Diffusion in the Fibonacci Kicked Rotator

    Full text link
    We study the dynamics of a quantum rotator kicked according to the almost-periodic Fibonacci sequence. A special numerical technique allows us to carry on this investigation for as many as 101210^{12} kicks. It is shown that above a critical kick strength the excitation of the system is well described by regular diffusion, while below this border it becomes anomalous, and sub-diffusive. A law for the dependence of the exponent of anomalous sub-diffusion on the system parameters is established numerically. The analogy between these results and quantum diffusion in models of quasi-crystal and in the kicked Harper system is discussed.Comment: 7 pages, 4 figures, submitted to Phys. Rev.

    On conformally recurrent manifolds of dimension greater than 4

    Full text link
    Conformally recurrent pseudo-Riemannian manifolds of dimension n>4 are investigated. The Weyl tensor is represented as a Kulkarni-Nomizu product. If the square of the Weyl tensor is nonzero, a covariantly constant symmetric tensor is constructed, that is quadratic in the Weyl tensor. Then, by Grycak's theorem, the explicit expression of the traceless part of the Ricci tensor is obtained, up to a scalar function. The Ricci tensor has at most two distinct eigenvalues, and the recurrence vector is an eigenvector. Lorentzian conformally recurrent manifolds are then considered. If the square of the Weyl tensor is nonzero, the manifold is decomposable. A null recurrence vector makes the Weyl tensor of algebraic type IId or higher in the Bel - Debever - Ortaggio classification, while a time-like recurrence vector makes the Weyl tensor purely electric.Comment: Title changed and typos corrected. 14 page

    A Stable Stieltjes Technique for Computing Orthogonal Polynomials and Jacobi Matrices Associated with a Class of Singular Measures

    Get PDF

    Quantum entropies and decoherence for the multiparticle quantum Arnol’d Cat †

    Get PDF
    I study the scaling behavior in the physical parameters of dynamical entropies, classical and quantum, in a specifically devised model of collision-induced decoherence in a chaotic system. The treatment is fully canonical and no approximations are involved or infinite limits taken. I present this model in a detailed way, in order to clarify my views in the debate about the nature, definition, and relevance of quantum chaos

    Coarse-Grained Probabilistic Automata Mimicking Chaotic Systems

    Get PDF
    Discretization of phase space usually nullifies chaos in dynamical systems. We show that if randomness is associated with discretization dynamical chaos may survive and be indistinguishable from that of the original chaotic system, when an entropic, coarse-grained analysis is performed. Relevance of this phenomenon to the problem of quantum chaos is discussed.Comment: 4 pages, 4 figure

    Cyclotron-Bloch dynamics of a quantum particle in a two-dimensional lattice II

    Full text link
    We study the quantum dynamics of a charged particle in a two-dimensional lattice, subject to constant and homogeneous electric and magnetic fields. We find that different regimes characterize these motions, depending on a combination of conditions, corresponding to weak and strong electric field intensities, rational or irrational directions of the electric field with respect to the lattice, and small or large values of the magnetic (Peierls) phase.Comment: 22 pages, 11 figure

    Cyclotron-Bloch dynamics of a quantum particle in a 2D lattice

    Full text link
    This paper studies the quantum dynamics of a charged particle in a 2D square lattice, under the influence of electric and magnetic fields, the former being aligned with one of the lattice axes and the latter perpendicular to the lattice plane. While in free space these dynamics consist of uniform motions in the direction orthogonal to the electric field vector, we find that, in a lattice, this directed drift takes place only for specific initial conditions and for electric field magnitudes smaller than a critical value. Otherwise, the quantum wave--packet spreads ballistically in both directions orthogonal to the electric field. We quantify this ballistic spreading and identify the subspace of initial conditions insuring directed transport with the drift velocity. We also describe the effect of disorder in the system.Comment: APS preprint format, 23 pages, 11 figure

    Electron Wave Filters from Inverse Scattering Theory

    Full text link
    Semiconductor heterostructures with prescribed energy dependence of the transmittance can be designed by combining: {\em a)} Pad\'e approximant reconstruction of the S-matrix; {\em b)} inverse scattering theory for Schro\"dinger's equation; {\em c)} a unitary transformation which takes into account the variable mass effects. The resultant continuous concentration profile can be digitized into an easily realizable rectangular-wells structure. For illustration, we give the specifications of a 2 narrow band-pass 12 layer AlcGa1−cAsAl_cGa_{1-c}As filter with the high energy peak more than {\em twice narrower} than the other.Comment: 4 pages, Revtex with one eps figur
    • …
    corecore